A (p, q)-deformed Landau problem in a spherical harmonic well: spectrum and noncommuting coordinates

نویسندگان

  • Joseph Ben Geloun
  • Jan Govaerts
چکیده

A (p, q)-deformation of the Landau problem in a spherically symmetric harmonic potential is considered. The quantum spectrum as well as space noncommutativity are established, whether for the full Landau problem or its quantum Hall projections. The well known noncommutative geometry in each Landau level is recovered in the appropriate limit. PACS numbers: 02.40.Gh, 02.20.-a, 02.20.Uw Submitted to: J. Phys. A: Math. Gen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommuting Coordinates in the Landau problem

Basic ideas about noncommuting coordinates are summarized, and then coordinate noncommutativity, as it arises in the Landau problem, is investigated. I review a quantum solution to the Landau problem, and evaluate the coordinate commutator in a truncated state space of Landau levels. Restriction to the lowest Landau level reproduces the well known commutator of planar coordinates. Inclusion of ...

متن کامل

Classes of f-Deformed Landau Operators: Nonlinear Noncommutative Coordinates from Algebraic Representations

We consider, in a superspace, new operator dependent noncommutative (NC) geometries of the nonlinear quantum Hall limit related to classes of f -deformed Landau operators in the spherical harmonic well. Different NC coordinate algebras are determined using unitary representation spaces of Fock-Heisenberg tensored algebras and of the Schwinger-Fock realisation of the su(1, 1) Lie algebra. A redu...

متن کامل

The noncommutative harmonic oscillator in more than one dimensions

The noncommutative harmonic oscillator in arbitrary dimension is examined. It is shown that the ⋆-genvalue problem can be decomposed into separate harmonic oscillator equations for each dimension. The noncommutative plane is investigated in greater detail. The constraints for rotationally symmetric solutions and the corresponding twodimensional harmonic oscillator are solved. The angular moment...

متن کامل

Lagrangian and Hamiltonian Formalism on a Quantum Plane

We examine the problem of defining Lagrangian and Hamiltonian mechanics for a particle moving on a quantum plane Qq,p. For Lagrangian mechanics, we first define a tangent quantum plane TQq,p spanned by noncommuting particle coordinates and velocities. Using techniques similar to those of Wess and Zumino, we construct two different differential calculi on TQq,p. These two differential calculi ca...

متن کامل

q-Quaternions and q-deformed su(2) instantons

We construct (anti)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean spaceRq [the SOq(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti)selfduality equations are covariant under the quantum group of deformed rotations, translations and scale change, by applying the latt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006